2-Aminopyrrolo[1,2-a]- and 3-Aminopyrrolo[1,2-c]-pyrimidines

By David G. Doughty, Edward E. Glover,* and (in part) Kenneth D. Vaughan, Department of Chemistry, Teeside Polytechnic, Middlesbrough, Cleveland TS1 3BA

Treatment of 4-amino-6-methylpyrimidine with phenacyl bromide followed by base gives 3-amino-6-phenylpyrrolo[1,2-c]pyrimidine and not 7-methyl-2-phenylimidazo[1,2-c]pyrimidine as reported previously. Similar treatment of 4-amino-2-methyl- and 4-amino-2,6-dimethyl-pyrimidine yields 2-amino-7-phenyl- and 2-amino-4-methyl-7-phenyl-pyrrolo[1,2-a]pyrimidine, respectively.

WE were interested in the preparation of 1-aminoimidazo[1,2-c]-pyrimidinium salts such as (3). A route via treatment of the acetylated 4-pyrimidylhydrazine (1) with phenacyl bromide and subsequent cyclization of the intermediate quaternary salt (2) with aqueous acid in a manner analogous to that previously described ¹ for the formation of 1-amino-2-phenylimidazo[1,2-a]pyridinium salts seemed possible. The product of the reaction between (1) and phenacyl bromide was, however, the quaternary salt (4), derived by guaternization at N-1, and compound (10) ^{7,8} and the 5,7-dimethyl-2-phenyl compound (11)⁹ have been reported as the products from the action of phenacyl bromide on 4-amino-6-methylpyrimidine, and on 4-amino-2,6-dimethylpyrimidine, respectively, after basification. We treated the more readily accessible 4-amino-2,6-dimethylpyrimidine ¹⁰ (9) with phenacyl bromide followed by base and obtained a compound, the i.r. spectrum of which showed strong NH bands in the 3 100-3 500 cm⁻¹ region and the ¹H n.m.r. spectrum of which [solvent (CD₃)₂SO; in external Me₄Si

subsequent hydrolysis with hydrobromic acid gave the bromide hydrobromide (5). Compound (5) was also obtained by treatment of 4-pyrimidylhydrazine (6) with phenacyl bromide followed by hydrobromic acid, and its structure followed from elemental analysis and a carbonyl i.r. band at 1 695 cm⁻¹ (KBr disc). Thus the quaternization of 4-pyrimidylhydrazine, like that of 4-aminopyrimidine,^{2,3} occurs preferentially at N-1.

An alternative route envisaged to the N-amino-salt-(3) would involve N-amination of 2-phenylimidazo 1,2c]pyrimidine with O-mesitylsulphonyl-4 or O-p-tolylsulphonyl-hydroxylamine.5

Despite the preference of 4-aminopyrimidine for quaternization at N-1,^{2,3} a 20% yield of a mixture of 2-methyl- and 3-methyl-imidazo[1,2-c]pyrimidines has been obtained 6 from treatment of 4-aminopyrimidine with 2-bromopropionaldehyde. The 7-methyl-2-phenyl

¹ E. E. Glover and M. Yorke, J. Chem. Soc. (C), 1971, 3281. ² D. J. Brown, E. Hoerger, and S. F. Mason, J. Chem. Soc., 1955. 4035.

³ F. H. S. Curd and D. N. Richardson, J. Chem. Soc., 1955, 1853.

standard] showed only one methyl signal (δ 2.15). We deduced that our product was either the aminopyrrolo-[1,2-c]pyrimidine (13) or the aminopyrrolo[1,2-a]pyrimidine (15), and not the reported ⁹ imidazo[1,2-c]pyrimidine (11). In order to distinguish between these possibilities, both 4-amino-6-methylpyrimidine (7) and the 4-amino-2methyl compound (8) were treated with phenacyl bromide followed by base. In each case the product [(12)]and (14), respectively] was characterized by the absence of a methyl signal in the ¹H n.m.r. spectrum and the presence of strong NH i.r. bands in the 3 100-3 500 cm⁻¹ region. It was concluded, therefore, that compounds (12) and (14) were, respectively, 3-amino-6-phenylpyrrolo-[1,2-c] pyrimidine and 2-amino-7-phenylpyrrolo[1,2-a]pyrimidine. The formation of (12) contrasts with the previously reported ^{7,8} formation of the imidazopyrimidine (10) from the reaction between 4-amino-6-methylpyrimidine (7) and phenacyl bromide.

⁶ P. Guerret, R. Jacquier, and G. Maury, J. Heterocyclic Chem., 1971, 8, 643.

1959, 248, 1832.

⁴ Y. Tamura, J. Minamikawa, Y. Miki, S. Matsugashita, and M. Ikeda, Tetrahedron Letters, 1972, 4133.
 ⁵ E. E. Glover and K. T. Rowbottom, J.C.S. Perkin I, 1976,

^{367.}

¹⁰ A. R. Ronzio and W. B. Cook, Org. Synth., Coll. Vol. III, 1955, 71.

The u.v. spectrum of the product of the reaction between 4-amino-2,6-dimethylpyrimidine (9) and phenacyl bromide was almost identical with that of (14) and differ-

EXPERIMENTAL

M.p.s were determined with a Kofler hot-stage apparatus and n.m.r., i.r., and u.v. spectra on Perkin-Elmer

		Yield			Fo	Found (%)		Rqd. (%)		6)
Reactants	Product	(%)	M.p. (°C)	Cryst. solvent	ĉ	H	N	C	H	N
4-Pyrimidylhydrazine 11 (0.55 g) in dry	(1)	55	154	MeCN	47.2	5.4	37.1	47.4	5.3	36.8
pyridine $(2 \text{ ml}) + \text{Ac}_2 O (0.51 \text{ g})^{a}$										
(1) $(0.3 \text{ g}) + \text{PhCO-CH}_2\text{Br} (0.4 \text{ g})$ in dry	(4)	46	222 - 223	$MeOH-Et_2O$	47.5	4.5	15.6	47.9	4.3	16.0
$\frac{MeCN}{D} (5 ml)^{b}$	(=)		004 000		04 F					
4-Pyrimidylhydrazine $11(0.22 \text{ g}) +$	(5)	21	204 - 206	48% HBr	36.7	3.8	14.1	36.9	3.6	14.4
$\dot{PhCO} \cdot \dot{CH}_{2} \dot{Br} (0.4 \text{ g}) \text{ in } \dot{MeCN} \dot{c}$	(5)	07	004 000	400/ IID.						
(4) (0.2 g) in 48% hydrobromic acid (6 ml) ^{a}	(5)	37	204 - 206	48% HBr						
$(7) \bullet (4.4 g) + PhCO \cdot CH_2Br (8 g) in EtOH$	(12) ^{g-j}	21	240 k, l	PhH ^m	74.6	5.2	20.1	74.6	5.3	20.1
$(20 \text{ ml})^{f}$										
$(8)^{12} (4.4 \text{ g}) + \text{PhCO-CH}_{2} \text{Br} (8 \text{ g}) \text{ in EtOH}$	$(14)^{n}$	47	$205 \ ^{k}$	PhH ^m	74.3	5.1	20.4	74.6	5.3	20.1
$(20 \text{ ml})^{f}$	• •									
$(9)^{10} (5 \text{ g}) + \text{PhCO-CH}_2 \text{Br} (8 \text{ g}) \text{ in EtOH}$	$(15)^{o,p}$	13	174 ^k	PhH "	74.9	6.0	19.3	75.3	5.9	18.8
$(20 \text{ ml})^{f}$. ,									

^a The acetic anhydride was added dropwise to the stirred solution. Ether was then added and the precipitated gummy product triturated until solid. ^b The solution was boiled under reflux for 0.5 h. An oil which separated initially slowly solidified, after which the cooled mixture was filtered and the solid product recrystallized. ^c The solution was heated under reflux on a boiling water-bath for 5 min and then cooled. The solvent was then decanted and the residual oil treated with 48% hydrobromic acid (2 ml), giving the bromide hydrobromide, which was filtered off. ^d The solution was boiled under reflux for 0.5 h and then cooled, and the product was filtered off. ^e Prepared from 4-amino-6-methylpyrimidine-2-thiol by the procedure described ¹³ for the preparation of 4-aminopyrimidine from 4-aminopyrimidine-2-thiol. ^f The solution was boiled under reflux for 5 h and evaporated. The residue was then boiled with acetone and the residual solid filtered off. The solution was boiled under reflux for 5 h and evaporated. The residue was then boiled with acetone and the residual solid filtered off. The solution was boiled under reflux for 5 h and evaporated. The residue was then boiled with acetone and the residual solid filtered off. The solution was boiled under reflux for 5 h and evaporated. The residue was then boiled with acetone and the residual solid filtered off. The solution was boiled under reflux for 5 h and evaporated. The residue was then boiled with acetone and the residual solid filtered off. The solution was boiled under reflux for 5 h and then cooled, and the product separated. ^e $\nu_{\rm NH}$ (KBr) 3 440, 3 320, 3 215, and 3 130 cm⁻¹, $\lambda_{\rm max}$ (MeOH) 262, 360sh, and 390sh nm (log ϵ 4.7, 3.2, and 3.1). ^h The green benzoyl derivative, recrystallized from thanol and then benzene, had m.p. 234° (decomp.) (Found: C, 76.3; H, 4.7. C₂₀H₁₅N₃O requires C, 76.7; H, 4.8%₀). ⁱ The hydrobromide, recrystallized from ethanol, decomposed at 220 °C (Found: C, 54.1; H, 4.3; N, 14.3. C₁₃H

ent from that of (12), establishing this substance as the pyrrolo[1,2-a] pyrimidine (15), as distinct from the pyrrolo[1,2-c] pyrimidine (13).

¹¹ J. H. Chesterfield, J. F. W. McOmie, and E. R. Sayer, J. Chem. Soc., 1955, 3478.
¹² H. R. Henze, W. J. Clegg, and C. W. Smart, J. Org. Chem.,

¹² H. R. Henze, W. J. Clegg, and C. W. Smart, J. Org. Chem., 1952, **17**, 1320.

spectrophotometers, models R12A, 237, and 137UV respectively.

We thank Allen and Hanburys for maintenance grants (to D. G. D. and K. D. V.).

[6/722 Received, 12th April, 1976]

¹³ D. J. Brown, J. Soc. Chem. Ind., 1950, 69, 353.

Copyright 1976 by The Chemical Society