2-Aminopyrrolo[1,2-a]- and 3-Aminopyrrolo[1,2-c]-pyrimidines

By David G. Doughty, Edward E. Glover,* and (in part) Kenneth D. Vaughan, Department of Chemistry, Teeside Polytechnic, Middlesbrough, Cleveland TS1 3BA

Abstract

Treatment of 4-amino-6-methylpyrimidine with phenacyl bromide followed by base gives 3-amino-6-phenyl-pyrrolo[1,2-c] pyrimidine and not 7-methyl-2-phenylimidazo[1,2-c]pyrimidine as reported previously. Similar treatment of 4 -amino-2-methyl- and 4-amino-2,6-dimethyl-pyrimidine yields 2 -amino-7-phenyl- and 2-amino-4-methyl-7-phenyl-pyrrolo[1,2-a]pyrimidine, respectively.

We were interested in the preparation of 1 -aminoimidazo [1,2-c]-pyrimidinium salts such as (3). A route via treatment of the acetylated 4-pyrimidylhydrazine (l) with phenacyl bromide and subsequent cyclization of the intermediate quaternary salt (2) with aqueous acid in a manner analogous to that previously described ${ }^{1}$ for the formation of 1-amino-2-phenylimidazo[1,2-a]pyridinium salts seemed possible. The product of the reaction between (1) and phenacyl bromide was, however, the quaternary salt (4), derived by quaternization at N-1, and
compound (10) ${ }^{7,8}$ and the 5,7-dimethyl-2-phenyl compound (ll) ${ }^{9}$ have been reported as the products from the action of phenacyl bromide on 4 -amino- 6 -methylpyrimidine, and on 4 -amino-2,6-dimethylpyrimidine, respectively, after basification. We treated the more readily accessible 4 -amino-2,6-dimethylpyrimidine ${ }^{10}$ (9) with phenacyl bromide followed by base and obtained a compound, the i.r. spectrum of which showed strong NH bands in the $3100-3500 \mathrm{~cm}^{-1}$ region and the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of which [solvent $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$; in external $\mathrm{Me}_{4} \mathrm{Si}$

(1)
(2)
(3)

(4)

(6)
subsequent hydrolysis with hydrobromic acid gave the bromide hydrobromide (5). Compound (5) was also obtained by treatment of 4-pyrimidylhydrazine (6) with phenacyl bromide followed by hydrobromic acid, and its structure followed from elemental analysis and a carbonyl i.r. band at $1695 \mathrm{~cm}^{-1}$ (KBr disc). Thus the quaternization of 4 -pyrimidylhydrazine, like that of 4-aminopyrimidine, ${ }^{2,3}$ occurs preferentially at N -l.

An alternative route envisaged to the N-amino-salt(3) would involve N-amination of 2 -phenylimidazo[1,2c]pyrimidine with O-mesitylsulphonyl- ${ }^{4}$ or O - p-tolyl-sulphonyl-hydroxylamine. ${ }^{5}$

Despite the preference of 4-aminopyrimidine for quaternization at $\mathrm{N}-1,{ }^{2,3}$ a 20% yield of a mixture of 2-methyl- and 3-methyl-imidazo[1,2-c]pyrimidines has been obtained ${ }^{6}$ from treatment of 4 -aminopyrimidine with 2-bromopropionaldehyde. The 7-methyl-2-phenyl

[^0]standard] showed only one methyl signal ($\delta 2.15$). We deduced that our product was either the aminopyrrolo-[1,2-c]pyrimidine (13) or the aminopyrrolo[1,2-a]pyrimidine (15), and not the reported ${ }^{9}$ imidazo $[1,2-c]$ pyrimidine (11). In order to distinguish between these possibilities, both 4 -amino-6-methylpyrimidine (7) and the 4 -amino-2methyl compound (8) were treated with phenacyl bromide followed by base. In each case the product [(12) and (14), respectively] was characterized by the absence of a methyl signal in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum and the presence of strong NH i.r. bands in the $3100-3500 \mathrm{~cm}^{-1}$ region. It was concluded, therefore, that compounds (12) and (14) were, respectively, 3 -amino- 6 -phenylpyrrolo-[1,2-c]pyrimidine and 2-amino-7-phenylpyrrolo[1,2-a]pyrimidine. The formation of (12) contrasts with the previously reported ${ }^{7,8}$ formation of the imidazopyrimidine (10) from the reaction between 4 -amino-6-methylpyrimidine (7) and phenacyl bromide.

[^1]The u.v. spectrum of the product of the reaction between 4 -amino-2,6-dimethylpyrimidine (9) and phenacyl bromide was almost identical with that of (14) and differ-

EXPERIMENTAL

M.p.s were determined with a Kofler hot-stage apparatus and n.m.r., i.r., and u.v. spectra on Perkin-Elmer

		Yield				d			,	
Reactants	Product	(\%)	M.p. (${ }^{\circ} \mathrm{C}$)	Cryst. solvent	C	H	N	C	H	N
4-Pyrimidylhydrazine ${ }^{11}$ (0.55 g) in dry	(1)	55	154	MeCN	47.2	5.4	37.1	47.4	5.3	36.8
pyridine (2 ml) $+\mathrm{Ac}_{2} \mathrm{O}(0.51 \mathrm{~g})^{\text {a }}$										
$\begin{aligned} & \text { (1) }(0.3 \mathrm{~g})+\mathrm{PhCO} \cdot \mathrm{CH}_{2} \mathrm{Br}(0.4 \mathrm{~g}) \text { in dry } \\ & \mathrm{MeCN}(5 \mathrm{ml})^{b} \end{aligned}$	(4)	46	222-223	$\mathrm{MeOH}-\mathrm{Et}_{2} \mathrm{O}$	47.5	4.5	15.6	47.9	4.3	16.0
4-Pyrimidylhydrazine ${ }^{11}(0.22 \mathrm{~g})+$ $\mathrm{PhCO} \cdot \mathrm{CH}_{2} \mathrm{Br}(0.4 \mathrm{~g})$ in $\mathrm{MeCN}{ }^{c}$	(5)	21	204-206	48\% HBr	36.7	3.8	14.1	36.9	3.6	14.4
(4) (0.2 g) in 48% hydrobromic acid (6 ml) ${ }^{\text {a }}$	(5)	37	204-206	48\% HBr						
$\begin{aligned} & \text { (7) } \cdot(4.4 \mathrm{~g})+\mathrm{PhCO} \cdot \mathrm{CH}_{2} \mathrm{Br}(8 \mathrm{~g}) \text { in } \mathrm{EtOH} \\ & (20 \mathrm{ml})^{f} \end{aligned}$	$(12)^{9-j}$	21	$240^{k, l}$	PhH ${ }^{m}$	74.6	5.2	20.1	74.6	5.3	20.1
(8) ${ }^{12}(4.4 \mathrm{~g})+\mathrm{PhCO}^{2} \cdot \mathrm{CH}_{2} \mathrm{Br}(8 \mathrm{~g})$ in EtOH $(20 \mathrm{ml})$	$(14)^{n}$	47	205^{k}	PhH ${ }^{n}$	74.3	5.1	20.4	74.6	5.3	20.1
$\underset{(20 \mathrm{ml})^{f}}{(9)^{10}(5 \mathrm{~g})}+\mathrm{PhCO}^{\left(\mathrm{CH}_{2} \mathrm{Br}(8 \mathrm{~g}) \text { in } \mathrm{EtOH}\right.}$	(15) ${ }^{0, p}$	13	$174{ }^{k}$	PhH ${ }^{m}$	74.9	6.0	19.3	75.3	5.9	18.8

Abstract

${ }^{a}$ The acetic anhydride was added dropwise to the stirred solution. Ether was then added and the precipitated gummy product triturated until solid. ${ }^{b}$ The solution was boiled under reflux for 0.5 h . An oil which separated initially slowly solidified, after which the cooled mixture was filtered and the solid product recrystallized. ${ }^{c}$ The solution was heated under reflux on a boiling water-bath for 5 min and then cooled. The solvent was then decanted and the residual oil treated with 48% hydrobromic acid $(2 \mathrm{ml})$, giving the bromide hydrobromide, which was filtered off. ${ }^{d}$ The solution was boiled under reflux for 0.5 h and then cooled, and the product was filtered off. ${ }^{6}$ Prepared from 4 -amino-6-methylpyrimidine-2-thiol by the procedure described ${ }^{13}$ for the preparation of 4-aminopyrimidine from 4-aminopyrimidine- 2 -thiol. ${ }^{f}$ The solution was boiled under reflux for 5 h and evaporated. The residue was then boiled with acetone and the residual solid filtered off. The solid was then added to hot aqueous 10% sodium carbonate, and the product separated. ${ }^{2} \nu_{\mathrm{NH}}(\mathrm{KBr}) 3440,3320,3215$, and $3130 \mathrm{~cm}^{-1}, \lambda_{\text {max. }}(\mathrm{MeOH}) 262,360 \mathrm{sh}$, and 390 sh nm ($\log \varepsilon 4.7,3.2$, and 3.1). ${ }^{k}$ The green benzoyl derivative, recrystallized from ethanol and then benzene, had m.p. 234° (decomp.) (Found: C, 76.3; H, 4.7. $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 76.7 ; \mathrm{H}, 4.8 \%$). ${ }^{i}$ The hydrobromide, recrystallized from ethanol, decomposed at $220{ }^{\circ} \mathrm{C}$ (Found: C, $54.1 ; \mathrm{H}, 4.3 ; \mathrm{N}, 14.3 . \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3}, \mathrm{HBr}$ requires C, $53.8 ; \mathrm{H}, 4.2 ; \mathrm{N}, 14.5 \%$). ${ }^{j}$ The acetyl derivative, obtained by boiling a solution of the base with an equivalent amount of acetic anhydride in an excess of pyridine followed by evaporation and recrystallization from ethanol, had m.p. 268° (decomp.) (Found: $\mathrm{N}, 16.4,16.5 \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{N}, 16.7 \%$). k With decomp. ${ }^{l}$ The product of this reaction has previously been reported 7,8 as 7 -methyl-2-phenylimidazo[l,2-c]pyrimidine, m.p. 244°. m May also be purified by vacuum sublimation. ${ }^{n} \nu_{\mathrm{NH}}(\mathrm{KBr}) 3460,3310,3280$, and $3120 \mathrm{~cm}^{-1}, \lambda_{\text {max }}$. $(\mathrm{MeOH}) 226,259,285 \mathrm{sh}, 302 \mathrm{sh}, 313 \mathrm{sh}$, and $373 \mathrm{~nm}\left(\log \varepsilon 4.2,4.63,4.05,3.94,3.86\right.$, and 3.38). ${ }^{\circ}{ }_{\nu_{N H}}(\mathrm{KBr}) 3440,3300,3280$, and $3140 \mathrm{~cm}^{-1}, \lambda_{\text {max. }}$ (MeOH) 225, 259, 283sh, 298 sh , 310 sh , and $361 \mathrm{~nm}(\log \varepsilon 4.17,4.66,4.1,3.98,3.9$, and 3.49$)$. ${ }^{2}$ The product of this reaction has previously been reported ${ }^{9}$ as 5,7-dimethyl-2-phenylimidazo[1,2-c]pyrimidine, m.p. 170°.

ent from that of (12), establishing this substance as the pyrrolo[1,2-a]pyrimidine (15), as distinct from the pyrrolo[1,2-c] pyrimidine (13).
${ }^{11}$ J. H. Chesterfield, J. F. W. McOmie, and E. R. Sayer, J. Chem. Soc., 1955, 3478.
${ }^{12}$ H. R. Henze, W. J. Clegg, and C. W. Smart, J. Org. Chem., 1952, 17, 1320.
spectrophotometers, models R12A, 237, and 137UV respectively.

We thank Allen and Hanburys for maintenance grants (to D. G. D. and K. D. V.).
[6/722 Received, 12th April, 1976]
13 D. J. Brown, J. Soc. Chem. Ind., 1950, 69, 353.

[^0]: ${ }^{1}$ E. E. Glover and M. Yorke, J. Chem. Soc. (C), 1971, 3281.
 ${ }^{2}$ D. J. Brown, E. Hoerger, and S. F. Mason, J. Chem. Soc., 1955, 4035.
 ${ }^{3}$ F. H. S. Curd and D. N. Richardson, J. Chem. Soc., 1955, 1853.
 ${ }_{4}$ Y. Tamura, J. Minamikawa, Y. Miki, S. Matsugashita, and M. Ikeda, Tetrahedron Letters, 1972, 4133.
 ${ }^{5}$ E. E. Glover and K. T. Rowbottom, J.C.S. Perkin I, 1976, 367.

[^1]: ${ }^{6}$ P. Guerret, R. Jacquier, and G. Maury, J. Heterocyclic Chem., 1971, 8, 643.

 7 E. Ochiai and M. Yanai, J. Pharm. Soc. Japan, 1939, 59, 97.
 ${ }^{8}$ J. G. Fischer and J. M. Straley, B.P. 1,159,691.
 ${ }^{9}$ N. P. Buu-Hoï, L. Petit, and N. D. Xuong, Compt. rend., 1959, 248, 1832.
 ${ }^{10}$ A. R. Ronzio and W. B. Cook, Org. Synth., Coll. Vol. III, 1955, 71.

